

1. Buffer

From the buffer there is a constant flow of Nereda® granular sludge to the Kaumera extraction installation.

2. Belt thickener

The sludge is deposited on a rotating belt. Part of the water falls through the belt. A polymer is added to ensure that the sludge clumps together and the belt does not clog.

3. Heat exchangers

The sludge passes through heat exchangers. The sludge temperature is increased to 80 degrees Celsius.

4. Extraction reactor

When the sludge is at 80 degrees Celsius, it enters the reactor. A base is added to increase the pH value. The sludge remains in the reactor for a few hours. Here, the Kaumera is extracted from the sludge and dissolves in the water phase.

5. Heat exchangers

The sludge passes through the heat exchangers again, but is now cooled down.

Unique in this process is the heat cycle. A heat pump extracts the heat from the sludge and this heat is reused at the beginning of the process to heat up the sludge (step 3).

6. Decanter centrifuge

In the decanter, the sludge is separated from the water. The water phase contains the dissolved Kaumera. The residue sludge will be removed and processed externally.

7. Disc centrifuge

The water travels through a pipe where an acid is added that lowers the pH value. The Kaumera precipitates as a gel like material. In the disc centrifuge, the Kaumera gel is separated from the water phase for the last time. The centrate goes to the Nereda® wastewater treatment plant, where we use it again.

8. Storage silo

The gelatinous Kaumera is stored in a silo.